long term monitoring

R. Todd Engstrom, Tall Timbers Research Station and Land Conservancy

The Miccosukee gooseberry (Ribes echinellum) was discovered in on private land in Jefferson County, Florida, in 1924. A second population was located in McCormick County, South Carolina, in 1957, but this is a study of the Florida population only. The species was classified as federally threatened in 1985. A portion of the Florida population was monitored from 1992 to 2001 by The Nature Conservancy and intermittently from 2010 to 2016 for the USFWS. Florida Natural Areas Inventory ecologists mapped the general distribution of Ribes in Jefferson County in 1985. A resurvey of the same area in 2016 determined that gooseberry still occurs to the same extent 31 years later. Ribes appears to thrive in tree fall gaps. Some of the most productive plants, in terms of the number of fruit produced, and some of the densest patches of gooseberry occurred along trunks of large fallen trees. Fruit production in the gooseberry is rare (median number of clumps with fruiting stems was 1.4% for the two subpopulations from 1992-2001), but the species is still common in the small area where it was first described. In 2010 I estimated that there were 8600 gooseberry clumps in the two largest subpopulations, but how clumps relate to genets is unknown. The population trend of gooseberry in one of the two largest subpopulations indicated by transects declined by 14.2% from 2011 to 2013, and nearly every transect in the subpopulation declined from the 10-year average collected from 1992 to 2001. Recent genetic studies revealed low genetic variation suggesting an increased risk of extinction or population decline, and another recent study indicates that seed predation by a mouse could have a significant negative effect on seed dispersal. One hypothesis for local declines of Ribes is rapid growth of extremely dense stands of laurel cherry (Prunus caroliniana).

Date Recorded: 
Thursday, March 5, 2020

Dr. Carlos Ramirez-Reyes1, D. Todd Jones-Farrand3, Garret Street1,2, Francisco Vilella4, Kristine O. Evans 1,2

1. Department of Wildlife, Fisheries and Aquaculture, Mississippi State University

2. Quantitative Ecology & Spatial Technologies Laboratory, Mississippi State University

3. U.S. Fish and Wildlife Service 302 Natural Resources, University of Missouri 4. U.S. Geological Survey, Mississippi Cooperative Fish and Wildlife Research Unit

Effective conservation planning requires reliable information on the distribution of species, which is often incomplete due to limited availability of data. Species distribution models (SDMs) and associated tools have proliferated in the past decades and have proven valuable in evaluating suitability and critical habitat for species. However, conservation practitioners have not fully adopted SDMs to inform surveys and other monitoring efforts. Instead, most efforts rely on expert knowledge and other traditional methods to locate extant populations. In particular, the Species Status Assessment (SSA) initiative of the U.S. Fish and Wildlife Service would benefit from incorporating SDM approaches to facilitate conservation decisions. Here, we describe an SDM approach for at-risk species that could be considered for SSA and similar species monitoring efforts. We applied 4 modeling techniques (generalized additive, maximum entropy, generalized boosted, and weighted ensemble) to recent monitoring data for 4 at-risk plant species (Scutellaria ocmulgee, Balduina atropurpurea, Rhynchospora crinipes and Torreya taxifolia) in the Southeastern U.S. Our results showed that ensemble distribution models reduced uncertainty caused by differences among modeling techniques and improved the predictive accuracy of fitted models. These models highlight areas with high habitat suitability for a particular species and therefore candidates for additional monitoring and survey efforts. We suggest that this approach could be adopted into the SSA framework to develop more robust and efficient assessments of at-risk species.

Date Recorded: 
Wednesday, March 4, 2020

Amy Jenkins, Florida Natural Areas Inventory

Chad Anderson, Florida Natural Areas Inventory

Jason Drake, United States Forest Service

Understanding the historic conditions and habitats in a region is a vital first step to planning restoration and management activities. With our partners, US Forest Service, Florida Forest Service, and the Florida Fish and Wildlife Conservation Commission, the Florida Natural Areas Inventory (FNAI) used aerial photography from as far back as the 1930’s, coupled with current photography, soils data, LiDAR elevation data, rare plant occurrences, and GPS’d groundtruthing points, to develop an historic vegetation map of several large contiguous conservation lands in the Apalachicola region. These maps cover a large portion of the region and are an important baseline for ecological and hydrological restoration efforts by managers across property boundaries. Additionally, historic vegetation maps can be used on a smaller scale when planning silvicultural projects, targeting specific habitats for rare plant surveys, or to identify areas where fire has long been absent. This map has been a vital tool when studying rare plant species such as Harper’s beauty (Harperocallis flava). Harper’s Beauty is a critically imperiled, federally endangered plant that is endemic to the Florida panhandle and grows in the species rich pitcherplant prairies of the Apalachicola River lowlands. FNAI has been documenting its populations for more than a decade. Harper’s beauty thrives in a fire dependent habitat that in recent decades has seen a reduction in the fire application and hence an increase of woody vegetation cover and some populations have been reduced or lost. Most recently we established monitoring plots to attempt to quantify its habitat conditions, especially in relation to fire. Preliminary data analysis has provided valuable insight to help guide management.

Date Recorded: 
Wednesday, March 4, 2020

Brian Pelc, Restoration Project Manager, The Nature Conservancy-Florida. Coordinator of the Apalachicola Regional Stewardship Alliance. Chad Anderson, Ecologist,

Florida Natural Areas Inventory Wet and Mesic Longleaf Pine Flatwoods (and structurally comparable longleaf ecosystems) play a critical role in maintaining the high biodiversity of southeastern forests. Previous flatwoods work has identified as many as 191 vascular plant taxa as well as >1500 plant species endemic to the North American Coastal Plain. This broad region of the southeastern continental United States is home to a gradient of native flatwoods habitats that once covered upwards of 90 million acres from Virginia to Texas. However, the vast majority of these native pine ecosystems were converted to off-site pine plantations and fire excluded in the last century, greatly reducing plant diversity and leaving land managers and biologists uncertain how best to implement and measure restoration efforts within a legacy of ecological mismanagement. Flatwoods restoration approaches in the last decade have resulted in very few successes, largely due to low survival of pine seedlings grown under an uncharacteristically dense and resilient shrub layer. To address this uncertainty and reverse the pattern of failed efforts, a partnership in the eastern portion of the Florida Panhandle is coordinating an effort to test various canopy conversion and fire re-introduction efforts on a meaningful scale and using a common monitoring protocol. The end goal will be a suite of clearing, site preparation, planting, maintenance and monitoring regimes that efficiently restore forest function and facilitate increased biodiversity over time. After identifying knowledge gaps for flatwoods longleaf pine establishment as a significant and high priority obstacle to large scale flatwoods restoration, the steering committee of the Apalachicola Regional Stewardship Alliance (ARSA)identified funds to 1) develop a monitoring protocol useful and comparable across the region and a variety of canopy thinning strategies and 2) install permanent plots in (at least) three partnership properties that span the east-west breadth of the partnership region (~ 100 miles.) Speakers will describe the baseline monitoring effort as well as plot level comparison between traditional vegetation monitoring data and data collected by terrestrial lidar scans. This project will require as much as decade to realize the full suite of tools for reconversion and associated impacts on flatwoods function and biodiversity. However, early successes can inform other projects and refine the suite of available tools.

Date Recorded: 
Wednesday, March 4, 2020

Stephanie Koontz, Archibold Biological Station, Cheryl L. Peterson, Bok Tower Gardens, Valerie C. Pence, Cincinnati Zoo and Botanical Garden, Eric S. Menges, Archbold Biological Station

Translocations are an increasingly utilized tool for rare plant conservation. Urbanization along the Lake Wales Ridge, in southcentral Florida, has led to 85% loss of native Florida scrub and sandhill. The few remaining intact patches hold a plethora of endemics. Our program has translocated several species from unprotected to protected parcels. All translocations are monitored post-outplanting and demographic data used to evaluate success. Here we present case studies for three federally listed species and discuss the challenges in restoring rare plants. Ziziphus celata has few remnant, mostly unprotected populations. Further contributing to its rarity is slow growth and limited sexual reproduction. We implemented 10 translocations between 1998 and 2012. Analyses of vital rates through 2016 determined annual survival of both wild and translocated plants is high (>90%), but growth of transplants is 1/10th the rate of wild plants. Many wild plants flower annually, yet <3% of transplants have reached reproductive maturity. Setting benchmarks for translocation success is challenging when dealing with a slow-growing, reproductively challenged species. Crotalaria avonensis has two protected and one unprotected site. Fruit set is low, requires insect pollination, and seedlings are rare. In 2012, we introduced genetic material from the unprotected site to a protected parcel. Transplants have thrived and expanded through clonal and seedling recruitment, from 84 original transplants to 208 plants in 2019. Germination of sown seeds was also a success (47%) with many surviving, flowering and fruiting. The first decade of this translocation may qualify as a success, but the ultimate test comes in long-term population responses to land management activities and climate change. Dicerandra christmanii has <10 sites, only one is protected. It relies on periodic fire to maintain open sandy gaps within the scrub matrix and persists from post-fire seedling recruitment. We have augmentated (2010) and introduction (2012) populations. Both translocations grew exponentially, but the question remained, were populations demographically viable. Using long-term demographic data from wild plants and integral projection models, we determined vital rates and predicted population trajectories were similar between wild and translocated populations. Wild populations provide a priori knowledge of a species’ basic biology and ecological requirements to inform more successful translocations.

Contributing Author(s): 
Date Recorded: 
Wednesday, March 4, 2020

Margi Hunter, Tennessee Naturalist Program, Cooper Breeden, Southeastern Grasslands Initiative, Austin Peay State University, Tennessee Plant Conservation Alliance

The lack of funding and resources necessary to conserve many of our most imperiled species and communities is a ubiquitous problem. In the absence of traditional support, more grassroots and citizen-led efforts are essential to ensure the survival of rare populations and habitats. In Tennessee, one citizen science-initiated and -led project has demonstrated the impact these grassroots efforts can have on our rare flora. We will present on the safeguarding efforts surrounding the running glade clover, Trifolium calcaricum. It is only known from 6 populations, only 1 of which in Tennessee is protected. With encouragement from the Tennessee Division of Natural Areas, a citizen volunteer initiated contact with a private landowner, secured permission to propagate plants from the site, and established 18 different reintroduction sites in nearby parks and state natural areas. In addition, a subset of plants were given to a local botanic garden to create an interpretive rare plant display. Future plans for this project include a suite of ecological and experimental studies to examine the effect of multiple factors on Trifolium calcaricum demographics on both introduced and natural populations.

Contributing Author(s): 
Date Recorded: 
Wednesday, March 4, 2020

Dr. Vivian Negrón-Ortiz, U.S. Fish & Wildlife Service, Ms. Melanie Kaeser, U.S. Fish and Wildlife Service

To protect and manage species listed under the U.S. Endangered Species Act requires the use of the best available science. Field-based studies on topics such as demography, reproductive biology, and seed ecology have provided sound conservation strategies for many imperiled plants. Unfortunately, understanding of relevant biology is still lacking for numerous rare species. Such biological information was lacking for Euphorbia telephioides, a threatened species primarily endemic to pineland flatwoods in the Florida Panhandle. This species is a perennial herbaceous plant that has suffered from the effects of habitat loss, degradation, and fragmentation throughout the entire range of its distribution in Florida. This is the primary threat identified in the Recovery Plan of 1994, and remains the main threat to date. As part of a longterm study to understand the conservation requirements for the recovery of E. telephioides, three distinct populations were studied across the range of this species. We established one permanent plot in each population, and investigated size and reproduction, response to fire, and in situ seed germination and seedling survival from 2010-2014. Euphorbia telephioides plants are long-lived and survived fire by resprouting. This species is composed of males, females, and monoecious individuals with labile sex expression, a system that has the effect of ensuring outcrossing and thus contributing to genetic variability, but also guarantees pollination in the absence of cross-pollination. To minimize exposure to seasonally stressful conditions, both adults and seedlings exhibited obligate winter dormancy and facultative nonsynchronized summer dormancy as well as prolonged vegetative dormancy. Seeds survive < 1 year, denoting that there is no persistent soil seed bank that can be relied on to maintain populations in the face of environmental stochasticity. However, once seedlings are established in the soil, they resprout back after fire, favoring a hypothesis that seedlings contribute to E. telephioides persistence. In conclusion, E. telephioides displays traits that are part of a life history that is adaptive in the fire-prone habitats where this species occurs. Implications for in-situ and ex-situ conservation programs will be discussed.

Date Recorded: 
Wednesday, March 4, 2020

Kelly Bibb, U.S. Fish & Wildlife Service Geoff Call, U.S. Fish & Wildlife Service, David Lincicome, Natural Heritage Program Manager, Tennessee Department of Environment and Conservation (TDEC) Andrea Bishop, Natural Heritage Program Botanist, TDEC - Retired

Effective partnerships guided by shared goals, such as recovery criteria, make it possible to recover endangered and threatened species of plants. For species listed under the Endangered Species Act (the Act), recovery plans provide measureable criteria for determining when they should be considered for delisting. These plans identify threats affecting listed species and describe actions that should be taken to understand the biology and ecology of those species and to reduce threats to the point that listing is no longer needed – i.e., to achieve recovery criteria. From the decision to list a species, to the development of a recovery plan, to the ultimate goal of delisting species, partnerships are vital for carrying out the purposes of the Act. The Service relies on recovery actions carried out by partners in State and Federal agencies, academia, private citizens, or – in the case of plants – botanical gardens. We also rely on data to demonstrate the effectiveness of those recovery efforts. The importance of reliable data in bearing out the effectiveness of recovery efforts cannot be overstated. The Service publishes rules to delist or reclassify species only after multiple levels of review, beginning in our field offices and ending with our headquarters in Arlington, Virginia. Biologists in Service field offices rely on data from our partners in preparing compelling rules that withstand careful scrutiny. Section 6 of the Act is titled Cooperation with the States, and cooperation between the Service, State conservation agencies, and many other partners has been a key factor in Tennessee’s plant conservation successes. Tennessee’s first federally listed plant, Echinacea tennesseensis, was listed as endangered in 1979. The state currently has 21 federally listed species of plants. Over the years there have been significant conservation successes. In 2002, Scutellaria montana was down-listed. In 2005 Helianthus ergertii was successfully recovered followed by the recovery of E. tennesseensis in 2011, 32 years after it was first listed. Plant conservation and recovery does not occur in a vacuum, especially when endangered and threatened species are at stake. In the early years of Tennessee’s Section 6 plant recovery program much of the work focused on recovery of E. tennesseensis, despite minimal coordination with the Service. During this time, Tennessee’s botanists forged partnerships with a community of plant conservationists in academia, NGOs, Federal agencies, and botanical gardens. By 1998 a closer relationship had developed between the local Service staff and the state botanists conducting recovery work, with the Service becoming a more active partner in Tennessee’s plant conservation community. Annual recovery coordination meetings between the Service and the state were more productively guiding conservation efforts. About the same time the state’s Natural Areas Program was rapidly building on its own successes in protecting significant conservation lands. The inertia gained from the two programs and close working relationship between the Service and the state led to the recovery successes in the 2000’s. As a result another endangered species is close to being considered for recovery. Still more plant conservation work remains and through conservation networking, shared goals and priorities, and leveraged resources a broad-based partnership is emerging in Tennessee to effectively conserve all of the state’s imperiled plants.

Date Recorded: 
Wednesday, March 4, 2020

Dr. Matt Estep, Appalachian State University Jennifer Rhode Ward, University of North Carolina at Asheville

Many plant species are being driven towards rarity due to exploitation for food, medicine, or the nursery trade. Land managers in the Smoky Mountain National Park are particularly concerned about two plant species: cutleaf coneflower / Sochan (Rudbeckia laciniata), and ramps (Allium tricoccum). Both of these species are traditionally foraged for food and ceremonial use by the Eastern Band of Cherokee Indians, and parklands will soon open to limited collection by EBCI members. To ensure the health and vitality of these species, a combination of demographic and genetic data are being collected. These will be used to assess baseline genetic diversity and prioritize populations for conservation. Developing novel molecular tools for monitor imperiled plant species is one avenue towards safeguarding their futures, as these tools can be used to identify problematic reductions in genetic diversity over time.

Date Recorded: 
Tuesday, March 3, 2020

Kendall McDonald, Tara Littlefield, Office of Kentucky Nature Preserves

The Office of Kentucky Nature Preserves (OKNP) is the natural heritage and natural areas program for Kentucky. OKNP maintains the Kentucky rare species database, and acquires and manages natural areas and nature preserves that host high quality communities and rare species. In 2019, OKNP created the Kentucky Forest Biodiversity Program (KFBP) in order to more efficiently address conservation concerns of Kentucky’s forests such as a conservation status of forest medicinal plants and other species of conservation concern, forest health, floristic quality, and increases in invasive species. OKNP conducted forest assessments at long term monitoring sites in approximately 20% of Kentucky’s counties. 20% of counties will be surveyed each year, completing the state wide inventory after 5 years (2019-2023). The KFBP focuses on surveys of rare and conservative forested plant species, forest community diversity and structure, herbaceous diversity, forest medicinal plants/species of commercial concern, invasive species and other threats. With creation of new partnerships, OKNP was able to increase staff and resources to make the KFBP possible. By leveraging existing resources of several statewide projects, creating an efficient data collection standard and building a larger database for all species and communities (biodiversity database), OKNP was able to create a more comprehensive program that addresses core biodiversity questions of Kentucky’s forests and meets the data needs for various partners throughout the state.

Contributing Author(s): 
Date Recorded: 
Tuesday, March 3, 2020